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TEM images of thin foils with quasi-globular particles are examined by means of two
methods of spatial statistics. The spatial arrangement of particle reference points is
described by means of quadrat count statistics and by polygonal method (the analysis of
the Voronoi mosaic generated by patterns of particle reference points). A good agreement
between the both approaches is found, the polygonal method is more sensitive and its
results are more conclusive. C© 1999 Kluwer Academic Publishers

1. Introduction
The properties of composite materials are influenced
not only by the amount (volume fractionVV ) and disper-
sion (intensityλ – number of particles per unit volume)
of strengthening phase, but also by its spatial organiza-
tion (arrangement). This arrangement is at best revealed
by considering the point pattern of particle reference
points determined according to a convenient rule. Its
description is model-based, which means that suitably
chosen characteristics of given sample are evaluated
and compared with characteristics of basic stochas-
tic models of spatial arrangement [2, 7, 8, 11, 12]. Even
when the statistical methods are well elaborated and
successful in other areas, their usage in metallography
is rather exceptional. In the present paper, thin foils
of chosen composite material are analysed in order to
answer three questions:

1. Is the dispersion of strengthening phase homoge-
neous w.r.t. the chosen sample size?

2. Is the arrangement of particle reference points in
space uniform random (i.e., can the point patterns be
considered as samples from a stationary Poisson point
process)?

3. Are the features of clustering and/or hard cores
present in the analysed point patterns?

The basic idea applied in the analysis is that the or-
thogonal projection of a parallel section sampled from
a spatial stationary Poisson point process is a planar
Poisson point process.

2. Material and methods
2.1. Material
The composite system Al-Al4C3 has been prepared
by powder metallurgy. The starting powders Al (of

size<100 µm) and C (2 wt %) were dry mechan-
ically alloyed for 90 minutes, compacted under the
pressure of 600 MPa (rod diameter 40 mm), annealed
at 550◦C/3 h and then extruded with 94% diameter
reduction; the resulting volume fraction of Al-Al4C3
wasVV = 8%, roughly one third ofVV was comprised
in very coarse particles. Thin foils of the thickness
L = (2000± 500) A

◦
were prepared by spark cutting

followed by electropolishing and did not include coarse
particles.

Four thin foils have been examined under various
magnificationM ranging from 42 500 to 80 000. The
centres of circles circumscribed to particle images have
been chosen as the reference points and the circle diam-
eters served as estimates of particle mean breadthsw

(cf. Fig. 1).
Only the particles with reference points within the se-

lected rectangular windowW of areaA have been con-
sidered (cf. Table I). For the application of the polygo-
nal method (see below), Voronoi mosaics generated by
the point pattern have been constructed (see Fig. 2): a
smaller rectangular windowW′ not including distorted
(unbounded) edge cells was chosen and only the cells
not intersecting the exclusion line were considered –
cf. the reduction in number of points (cells) in Table II.
For details cf. [1].

2.2. Preliminary analysis
The unique aim of the preliminary analysis is to
confirm that the chosen samples are representative.
Consequently, two basic sample characteristics have
been evaluated. The sample volume fraction have been
roughly estimated using the formula [13]

[VV ] = −2 ln(1− [ AA])

1+ 3L/w̄
,
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Figure 1 Sample B, the pattern of particle reference points (outlines of
particles—see [1]).

Figure 2 Voronoi mosaics generated by point patterns A, B, C and D.

TABLE I Results of the preliminary analysis (L = 2000 A
◦
)

W w̄ VV λ 199

Sample M (µm2) N (nm) (%) (µm−3) (µm−3)

A 50 000 7.38 310 72 5.07 154 [131,177]
B 80 000 2.80 200 60 4.80 275 [225,325]
C 80 000 2.78 300 50 3.57 432 [367,496]
D 42 500 9.76 260 76 4.00 96 [81,111]

where [AA] is the point lattice estimate of the fraction
of the projected foil areaA covered by particle images
andw̄ is the average value of the mean breadthw. The
formula includes corrections on the particle truncation
and overlap of their images. A rough estimate of the ref-
erence point intensity (without an overlap correction)
is

[λ] = N

A(L + w̄)
,

whereN is the number of particles with reference points
in the observing window. The results of the preliminary
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TABLE I I Results of the polygonal analysis (m1= 1)

Sample N m2 SD (m2) m3 m4
√

b1 b2 a0 h (nm)

A 174 0.427 0.123 0.716 2.68 2.585 14.7 0.231 85
B 115 0.644 0.238 1.609 6.72 3.153 16.2 0.184 57
C 150 0.300 0.088 0.361 1.08 2.218 12.0 0.283 57
D 146 0.261 0.045 0.145 0.29 1.098 4.3 0.233 48
PVM 2.106 0.281 — 0.154 0.36 1.033 4.6 0.000 —

analysis are summarized in the Table I. The volume
fractions in different samples are similar, their values
are reasonably close to the expectedVV = 5% in thin
foils. On the other hand, the intensity estimates vary
considerably. The deviations can be partly explained
by the increase in the resolution power with growing
magnification. Nevertheless, the differences between
the intensity estimates in samples B, C (observed at the
sameM) as well as in samples A, D (observed at compa-
rableM) is high enough to indicate an inhomogeneity of
dispersion. Assuming that the considered point patterns
are samples from a stationary Poisson point process (the
subsequent analysis shows that such an assumption is
not much unjustified in spite of some important differ-
ences), the 99% confidence intervals of the intensity
estimates [λ], namely199= [λ](1± u0.005/

√
N), have

been compared [8, 11] – Table I (hereu0.005= 2.576 is
the 0.005-critical value of the standard normalN(0, 1)
distribution. The disjoint confidence intervals confirm
the inhomogeneity of samples.

2.3. Estimation of the point pattern
arrangement by quadrat count

Quadrat count is a classical method of spatial statis-
tics with many applications [2, 5–8]. The rectangular
observing windowW is divided subsequently into
m= 2i , i = 2, 3, . . . translation equivalent rectangles
(quadrats) and the numbersNj (m), j = 1, . . . ,m of
points falling into these quadrats are used to estimate
the sample meanN(m) and sample variances2(m).
Under Poisson point process hypothesis, the statistics
ID(m)= (m− 1)s2(m)/N(m) called theindex of dis-
persionhas theχ2-distribution withm− 1 degrees of
freedom. Two-side 95% confidence interval is usually
used forID(m) and if the null hypothesis is rejected at
some values ofmwith ID(m) being too small, then there
is an evidence of regularity (hard-core) in the pattern.
Conversely, too greatID(m) reveals a tendency to clus-
tering. Another test statisticICS(m)=m−1 ID(m)− 1
called theindex of cluster sizeshould approach zero un-
der null (Poisson) hypothesis and its distinctly positive
(negative) value is an evidence of clustering (regularity)
– the expected numberEn of points in clusters would
be roughlyICS+ 1. If a significant departure from the
Poisson point process is observed only for certain val-
ues ofm then the areaW/m or the length

√
W/m can

be related to cluster size or regularity scale, respectively
(see below).

The results of quadrat count are shown in Fig. 3. Cer-
tain tendency to clustering is revealed – especially in
the samples A (the highest value of the both indices)
and B – at large(smallm≈ 15) and medium scale (m

between 50 and 100, say). Recalling that the sample
size is about 250 points then their mean number is be-
tween 2.5 and 5 in the individual medium scale test
squares. Taking into account that the value ofICSdoes
not exceed the value of 1, the presence of point pairs
only can be expected and their distance must be at least
comparable with the mean nearest neighbour distance
0.5/
√
λ of the Poisson point process of the same in-

tensity. To confirm this suggestion, several samples of
Poisson point process and mild cluster process (Mat´ern
clusters – Poisson distributed numbern of points per
cluster scattered uniformly at random within a disk of
diameterD, see [11]) were simulated with a number of
points per square about 200 and compared with the ex-
amined samples. Rather similar behaviour of the both
indices was observed in the following case: the diame-
terD= 1/λ or D= 2/λ, the mean numberEn= 1; then
approximately 60% of non-void clusters are singletons,
30% are pairs and 10% are triads. The both indices be-
haved rather similarly as the examined specimens at
low and medium values ofm, see Fig. 3. Obviously
no hard-core behaviour was observed at high values of
m. The relation betweenn, D, the interval ofm within
which a deviation of indices from the Poisson values is
observed and the magnitude of this deviation is rather
complex. If the size of the elementary quadrat consid-
erably exceeds the size of cluster (its diameterD) then
ICS≈En− 1 as stated above. Such a situation occurs
whenm is small but then also the value ofICS con-
siderably oscillates about its mean value depending on
the mutual position of the quadrat net and the exam-
ined pattern. Even it can happen that no peak at small
values ofm is observed similarly as in sample C or in
one simulated sample in Fig. 3 (note that the presence
of clusters can be recognized even whenEn= 1).

On the other hand, quadrats small in comparison with
D take into account points of a cluster as individual
points and no deviation from PPP can be discerned
(compare the simulated caseD= 2/

√
λ in Fig. 3).

Hence it is difficult to decide whether the observed sys-
tematic decrease ofICS is due to hard-core features or
due to large cluster diameterD.

2.4. Analysis of point patterns by polygonal
method

This is a very recent computer based method consisting
in the construction of the Voronoi mosaic generated by
the examined point pattern [6]. Namely, to any point
of the pattern is attached a polygonal (Voronoi) cell
formed by all points in the plane of pattern lying closer
to this point than to any other point of the pattern. Sev-
eral characteristics of the mosaic are then measured and
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Figure 3 The dependence of indicesICS(m) and ID(m) (with the two-side 95% confidence interval) on the division parameterm for examined
specimens and for three simulated realizations of Mat´ern cluster field withEn= 1 and cluster diametersD= 1, 2 (λ= 1).

compared with the corresponding values of mosaics
generated by Poisson point process (Poisson-Voronoi
mosaic – PVM) or by other model processes. The size
distribution Fa(x) of cell areasa is perhaps the most
suitable and arrangement sensitive quantity. The com-
parison between patterns of various intensity is made by
selecting the length unit [1/

√
λ]; then the mean value of

cell area isā= 1. The mosaics generated by clustered
patterns are overdispersed in comparison with PVM,
which means that the moments about originµk as well
as related quantities (skewness

√
β1, kurtosisβ2) of

area distribution exceeds the corresponding quantities
of PVM. The results of polygonal analysis are presented
in Table II; N is the number of analysed cells,mk are
the sample moments, SD(m2) is the standard devia-
tion of the m2 estimate,

√
b1 and b2 are the sample

skewness and kurtosis, respectively.a0 is the nonpara-
metric estimate (c.f. [1]) of the lower bound ofFa(x)
distribution, i.e.Fa(x)= 0 for x≤a0. The PVM val-
ues obtained by Hinde and Miles [4] are shown for the
comparison. It must be stressed that in contrast to the

methods of quadrats where obtained numerical results
vary depending on the position of the quadrat net, the
Voronoi mosaic generated by the pattern in question is
defined unequivocally.

The non-zero values ofa0 indicate that the point pat-
tern has a hard-core character; this is well comprehen-
sible as the original particles do not overlap in space
and this feature is not fully lost in the thin foil projec-
tions because of low particle intensity and small thick-
ness of the foils (L/w̄≤ 4). The rough estimate of the
hard-core parameterh (the lower bound of the inter-
point spacing) based on a0 is [h]=√4a0A/πN; the
obtained values should be lower bounds of the particle
breadthsw (compare Table I). In view of the poor reli-
ability of estimating bounds of distributions from small
samples, the agreement is satisfactory. The value of the
hard-core parameterh is well comparable with particle
mean breadths and, at the same time, it is as high as
themeannearest neighbour distance in a Poisson pat-
tern. Such a pattern differs noticeably from the Poisson
point pattern (if it were produced by dependent thinning
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Figure 4 Cell area probability density functions of point patterns A, B, PPP (a) and C, D, PPP (b).

according to the rules of the Mat´ern hard-core process
[11, 12], about 30% of points would be removed) and
it can be expected that the values of the momentsmk

would be considerably lower than the corresponding
values in PVM.

However, any underdispersion with respect to the
Poisson point process has not been observed and
the sample momentsmk are either comparable with
the Poissonian values (samples D, partly C) or consid-
erably higher (A, B). Hence it can be concluded that
beside a hard-core arrangement, also clustering at the
length scale exceedingh is present in all samples and its
degree is high especially in samples A, B. This outcome
confirms somewhat less definite results of the quadrat
count. In order to prove this hypothesis, the probabil-
ity density functions (pdfs)f (x) of the cell areas have
been estimated using the Epanechnikov kernel estima-
tor [12] (eξ (x)= 0.75(1−x2/ξ2)/ξ for−ξ ≤ x≤ ξ and
0 otherwise – with the bandwidthξ = 0.25). The results
are shown in Fig. 4. For the comparison, also the pdf
of PVM is shown (the generalizedγ -distribution pro-
posed by Hinde and Miles [4] and based on the large
scale simulation was used). The estimated pdf’s clearly
demonstrate the above proposals: delayed starts of the
curves testify hardcores of the points in the patterns
whereas shifts of the modes to lower values and slightly
heavier (in comparison with PVM) upper tails demon-
strate the presence of clustering.

On the other hand, the difference between pdf’s is
not much pronounced and some quantitative test of
their statistical difference is desirable. Consequently,
two hypotheses have been proposed, namely

H1: the sets of measured areas are samples (of un-
equal size) from the same distribution,

H2: the sets of measured areas are samples from the
area distribution of PVM,

and the Kolmogorov-Smirnov test was used to exam-
ine them (see e.g. [5]). LetFN(Z)(x) be the stepwise
empirical distribution function of the cell areas in spec-
imen Z (Z stands for A, B, C, D), whereN(Z) is the
sample size, and letF(x) be the distribution function of

cell areas in PVM computed by large scale simulations.
The test statistics are

S1Zi ,Z j =
√

N(Zi )N(Z j )

N(Zi )+ N(Z j )
DZi ,Z j ,

i 6= j, and S2Zi =
√

N(Zi )DZi ,

where DZi ,Z j =max|FZi (x)− FZ j (x)| and DZi =
max|FZi (x) − F(x)|. In the framework of the asymp-
totic approximation, the hypotheses are rejected at the
significance levelα if S•{q} > k1−α, wherek1−α is the
(1−α)-quantile of the Kolmogorov distribution. In or-
der to avoid the error of the first type (a rejection of
a true hypothesis), a small value ofα≤ 0.1 is usually
chosen. However, the reduction ofα increases the risk
of an error of the second type (a false hypothesis is
accepted).

The inspection of the Table III shows, that the both
hypotheses can be accepted at the significance levels
α≤ 0.1, neverthelessH2 could be rejected for A, B at
α= 0.2 and at a slightly higher levelH1 could also be
false for pairs A, C and B, C. It should be stressed that
two deviations from PVM observed in the specimens,
namely hard-core features and clustering mutually can-
cel to certain degree which makes the quantitative anal-
ysis more difficult and the results less convincing.

On the basis of observed values of area variancesm2,
a hypothesis concerning numberEn and cluster size
can also be proposed. If cluster diameterD is small
in comparison with the nearest neighbour distance

TABLE I I I Results of the Kolmogorov-Smirnov tests

Zi , Z j S1Zi ,Z j Zi S2Zi k0.8 k0.9 k0.95

A, B 0.763 A 1.166
A, C 0.999 B 1.200
A, D 0.764 C 0.763 1.073 1.224 1.358
B, C 1.048 D 0.566
B, D 0.856 — —
C, D 0.535 — —
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of cluster centres then the variance of the cell areas
(generated by Poisson cluster field) is approximately
given by En×m2(PPP) [9]. Hence using the values
in Table II, an estimate 1≤En≤ 2 follows in agree-
ment with the method of quadrats. A higher value of
En would be possible if clusters were greater. Also the
observed hard-core behaviour can decrease the value
of m2. The presence of clusters in samples C, D thus
cannot be excluded even when the observedm2(C),
m2(D)≈m2(PPP).

The size of clusters can be inferred also from the
shape of the pdfs [10] but samples of a greater size
would be necessary in order to obtain their more reliable
estimates. Other tools of polygonal analysis like order
statistics and cell shape analysis are described in [1, 10].

3. Conclusions
It can be concluded, that the both approaches applied to
the description of the particle arrangement have given
similar results. The polygonal analysis is perhaps more
conclusive and its possibilities have not been exhausted
in the present treatment. A more detailed comparison of
the methods of quadrats and of the polygonal analysis
was carried out by Hahn and Lorz [3] for the case of
planar sections of 3D Voronoi tessellation. Even if such
induced 2D tessellations are not of the Voronoi type,
the mutual correspondence between area variances of
cell sections and the type of the tessellation generat-
ing point pattern is similar, namely higher values of
variances describe sections of tessellations generated
by cluster fields and any regularity in the pattern is re-
flected by their decrease. Hahn and Lorz [3] found that
independently of the type of the pattern the power of
the test based on area variances (sample sizes 100 and
200 points) is definitely higher than that one of the ID
test and that the ratio of these powers can be of the order
of 2 in more regular structures. Nevertheless, a simul-
taneous use of the both methods can be recommended
if patterns close to PPP are analysed.

It should be stressed, that the main conclusions con-
cerning the spatial arrangement do not require an ex-
plicit knowledge of the foil thickness and do not seem
to be much influenced by the magnification. Never-
theless, more extensive overlapping of particle images
inevitable in thicker foils would make the results less
reliable. Recalling the questions posed in the introduc-
tion, the results of the analysis are as follows:

ad (1) The samples are representative for the ex-
amined composite alloy with respect to included vol-
ume fraction of strengthening phase. However, the
particle number per unit volume of the foil varies
considerably as a function of foil location and used
magnification.

ad (2), (3)The Poisson point process is not a suit-
able model for the point pattern of particle reference
points because all examined patterns are combina-
tions of hard-core arrangement with clustering of
various degree (increasing in the sequence D, C, A,
B) at a coarser scale.
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